Basit öğe kaydını göster

dc.contributor.authorArslan, Derya
dc.contributor.authorÖzdemir, Merve Erkınay
dc.contributor.authorArslan, Musrafa Turan
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T22:02:54Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T22:02:54Z
dc.date.issued2017
dc.identifier.citationArslan, D., Özdemir, M.E., Arslan, M.T. (2017). Gen ifade profilleri kullanılarak pankreas kanserinin örüntü tanıma yöntemleri ile teşhisi. IDAP 2017 - International Artificial Intelligence and Data Processing Symposium, art. no. 8090327. https://doi.org/10.1109/IDAP.2017.8090327en_US
dc.identifier.urihttps://doi.org/10.1109/IDAP.2017.8090327
dc.identifier.urihttps://hdl.handle.net/20.500.12508/495
dc.description2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 -- 16 September 2017 through 17 September 2017 -- -- 115012en_US
dc.description.abstractPancreatic cancer is the fourth most common cause of cancer-related deaths across the globe and it is one of the most difficult cancer types to recognize early. Early diagnosis of pancreatic cancer is crucial to increase survival for patients. In this study, it was tried to be estimated that persons were pancreatic cancer or healthy using microarray gene expression profile. In accordance with this purpose, Anova method was used to reduce the size of high-dimensional pancreatic cancer gene expression profile and eliminate redundant features. Reduced-size pancreas cancer gene expression profiles were classified by k-nearest neighbor (k-NN) and artificial neural network (ANN) algorithms. The classification accuracy is %82.7 and 84.6% with k-NN, ANN respectively. The promising results indicate that pancreatic cancer can be diagnosed with high accuracy. © 2017 IEEE.en_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/IDAP.2017.8090327en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectGene expression profileen_US
dc.subjectK-nearest neighboren_US
dc.subjectPancreatic canceren_US
dc.subject.classificationComputer Scienceen_US
dc.subject.classificationArtificial Intelligenceen_US
dc.subject.classificationComputer Scienceen_US
dc.subject.classificationInformation Systemsen_US
dc.subject.classificationComputer Scienceen_US
dc.subject.classificationInterdisciplinary Applicationsen_US
dc.subject.classificationGene Selection | Cancer Classification | Microarray Dataen_US
dc.subject.otherArtificial intelligenceen_US
dc.subject.otherData handlingen_US
dc.subject.otherDiagnosisen_US
dc.subject.otherDiseasesen_US
dc.subject.otherGenesen_US
dc.subject.otherMotion compensationen_US
dc.subject.otherNearest neighbor searchen_US
dc.subject.otherNeural networksen_US
dc.subject.otherPattern recognitionen_US
dc.subject.otherClassification accuracyen_US
dc.subject.otherHigh-dimensionalen_US
dc.subject.otherK-nearest neighborsen_US
dc.subject.otherMicroarray gene expressionen_US
dc.subject.otherPancreatic cancersen_US
dc.subject.otherPattern recognition methoden_US
dc.subject.otherRedundant featuresen_US
dc.titleGen ifade profilleri kullanılarak pankreas kanserinin örüntü tanıma yöntemleri ile teşhisien_US
dc.title.alternativeDiagnosis of pancreatic cancer by pattern recognition methods using gene expression profilesen_US
dc.typeconferenceObjecten_US
dc.relation.journalIDAP 2017 - International Artificial Intelligence and Data Processing Symposiumen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorArslan, Deryaen_US
dc.contributor.isteauthorÖzdemir, Merve Erkınayen_US
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Conference Proceedings Citation Index- Scienceen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster