Basit öğe kaydını göster

dc.contributor.authorMamak, Mustafa
dc.contributor.authorÜneş, Fatih
dc.contributor.authorKaya, Yunus Ziya
dc.contributor.authorDemirci, Mustafa
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T22:02:57Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T22:02:57Z
dc.date.issued2017
dc.identifier.urihttps://doi.org/10.3846/enviro.2017.085
dc.identifier.urihttps://hdl.handle.net/20.500.12508/512
dc.description10th International Conference on Environmental Engineering, ICEE 2017 -- 27 April 2017 through 28 April 2017 -- -- 144736en_US
dc.description.abstractEvapotranspiration (ET) estimation is a primary problem for irrigation engineers and hydraulic designers because it is an important part of hydrologic cycle. Even it is non-negligible in hydraulic design calculations, it is not clear enough to estimate or calculate ET. There are some meteorological parameters which effect ET directly or indirectly such as Relative Humidity (RH), Solar Radiation (SR), Air Temperature (AT) and Wind Speed (U). In this study authors used Adaptive Neuro-Fuzzy Inference System (ANFIS) for prediction of ET and results are compared with Penman FAO 56 empirical formula. 1158 daily AT, SR, RH and U values are used to train ANFIS model and 385 daily values are used to test it. ANFIS model determination coefficient with daily observed ET values found as 0.909. Also test set values are used to calculate Penman FAO 56 formula and the determination coefficient of Penman FAO 56 with daily observed ET values found as 0.857. For the comparison of the ANFIS model and Penman FAO 56 formula results Mean Square Error (MSE) and Mean Absolute Error (MAE) are computed. According to the comparison it is understood that ANFIS model has better performance than Penman FAO 56 empirical formula for the prediction of daily ET. © 2017 Mustafa Mamak, Fatih Üneş, Yunus Ziya Kaya, Mustafa Demirci. Published by VGTU Press. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY-NC 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_US
dc.language.isoengen_US
dc.publisherVilnius Gediminas Technical University Publishing House "Technika"en_US
dc.relation.isversionof10.3846/enviro.2017.085en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Intelligenten_US
dc.subjectEvapotranspirationen_US
dc.subjectForecastingen_US
dc.subjectHydrologic Modellingen_US
dc.subjectPenman FAO 56en_US
dc.subject.classificationEvapotranspiration | Penman-Monteith equation | Evapotranspiration ET0en_US
dc.subject.otheratmospheric temperatureen_US
dc.subject.otherevapotranspirationen_US
dc.subject.otherforecastingen_US
dc.subject.otherfuzzy neural networksen_US
dc.subject.otherfuzzy systemsen_US
dc.subject.othermean square erroren_US
dc.subject.otherwinden_US
dc.subject.otheradaptive neuro-fuzzy inference systemen_US
dc.subject.otherartificial intelligenten_US
dc.subject.otherdetermination coefficientsen_US
dc.subject.otherempirical formulasen_US
dc.subject.otherhydrologic modellingen_US
dc.subject.othermean absolute erroren_US
dc.subject.othermeteorological parametersen_US
dc.subject.otherpenman FAO 56en_US
dc.subject.otherfuzzy inferenceen_US
dc.subject.otherEngineeringen_US
dc.titleEvapotranspiration prediction using adaptive neuro-fuzzy inference system and Penman FAO 56 equation for St. Johns, FL, USAen_US
dc.typeconferenceObjecten_US
dc.relation.journal10th International Conference on Environmental Engineering, ICEE 2017en_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÜneş, Fatih
dc.contributor.isteauthorDemirci, Mustafa
dc.relation.indexScopusen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster