dc.contributor.author | Malloy, James | |
dc.contributor.author | Mantey, Kevin | |
dc.contributor.author | Maximenko, Yulia | |
dc.contributor.author | Bahçeci, Ersin | |
dc.contributor.author | Morgan, Huw | |
dc.contributor.author | Yamani, Zain | |
dc.contributor.author | Boparai, Jack | |
dc.contributor.author | Puthalath, Krithik | |
dc.contributor.author | Nayfeh, Munir Hasan | |
dc.date.accessioned | 12.07.201910:50:10 | |
dc.date.accessioned | 2019-07-12T22:06:08Z | |
dc.date.available | 12.07.201910:50:10 | |
dc.date.available | 2019-07-12T22:06:08Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Malloy, J., Mantey, K., Maximenko, Y., Bahceci, E., Morgan, H., Yamani, Z., Boparai, J., Puthalath,
K., Nayfeh, M.H. (2018). Experimental and theoretical study of ultraviolet-induced structural/optical instability in nano
silicon-based luminescence. Journal of Applied Physics, 124 (4), art. no. 044501.
https://doi.org/10.1063/1.5027307 | en_US |
dc.identifier.issn | 0021-8979 | |
dc.identifier.issn | 1089-7550 | |
dc.identifier.uri | https://doi.org/10.1063/1.5027307 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/649 | |
dc.description | WOS: 000440607800023 | en_US |
dc.description.abstract | Nano silicon is emerging as an active element for UV applications due to quantum confinement-induced widening of the Si bandgap, amenability to integration on Si, and less sensitivity to temperature. NanoSi-based UV applications include deep space exploration, high temperature propulsion, solar photovoltaics, and particle detection in high energy accelerators. However, the viability of the technology is limited by a complex nanoSi optical quenching instability. Here, we examined the time dynamics of UV-induced luminescence of sub 3-nm nanoSi. The results show that luminescence initially quenches, but it develops a stability at similar to 50% level with a time characteristic of minutes. Upon isolation, partial luminescence recovery/reversibility occurs with a time characteristics of hours. To discern the origin of the instability, we perform first principles atomistic calculations of the molecular/electronic structure in 1-nm Si particles as a function of Si structural bond expansion, using time dependent density functional theory, with structural relaxation applied in both ground and excited states. For certain bond expansion/relaxation, the results show that the low-lying triplet state dips below the singlet ground state, providing a plausible long-lasting optical trap that may account for luminescence quenching as well as bond cleavage and irreversibility. Time dynamics of device-operation that accommodates the quenching/recovery time dynamics is suggested as a means to alleviate the instability and allow control of recovery, which promises to make it an effective alternative to UV-enhanced Si or metal-based wide-bandgap sensing technology. Published by AIP Publishing. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | American Institute of Physics Inc. | en_US |
dc.relation.isversionof | 10.1063/1.5027307 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject.classification | Physics | en_US |
dc.subject.classification | Applied | en_US |
dc.subject.classification | Silicon | Quantum Dot | Photoluminescence | en_US |
dc.subject.other | Thin-film | en_US |
dc.subject.other | Electronic-structure | en_US |
dc.subject.other | Amorphous-silicon | en_US |
dc.subject.other | Uv photodetectors | en_US |
dc.subject.other | Surface-states | en_US |
dc.subject.other | Oxide | en_US |
dc.subject.other | Calculations | en_US |
dc.subject.other | Chemical bonds | en_US |
dc.subject.other | Density functional theory | en_US |
dc.subject.other | Dynamics | en_US |
dc.subject.other | Energy gap | en_US |
dc.subject.other | Ground state | en_US |
dc.subject.other | High temperature applications | en_US |
dc.subject.other | Interplanetary flight | en_US |
dc.subject.other | Luminescence | en_US |
dc.subject.other | Metal recovery | en_US |
dc.subject.other | Quenching | en_US |
dc.subject.other | Silicon | en_US |
dc.subject.other | Solar power generation | en_US |
dc.subject.other | Space research | en_US |
dc.subject.other | Stability | en_US |
dc.subject.other | Atomistic calculations | en_US |
dc.subject.other | Deep-space exploration | en_US |
dc.subject.other | High-energy accelerator | en_US |
dc.subject.other | Luminescence quenching | en_US |
dc.subject.other | Sensitivity to temperatures | en_US |
dc.subject.other | Singlet ground state | en_US |
dc.subject.other | Time characteristics | en_US |
dc.subject.other | Time dependent density functional theory | en_US |
dc.subject.other | Silicon alloys | en_US |
dc.title | Experimental and theoretical study of ultraviolet-induced structural/optical instability in nano silicon-based luminescence | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Applied Pyhsics | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Metalurji ve Malzeme Mühendisliği Bölümü | en_US |
dc.contributor.authorID | 0000-0002-7719-6051 | en_US |
dc.identifier.volume | 124 | en_US |
dc.identifier.issue | 4 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Bahçeci, Ersin | en_US |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | en_US |