Basit öğe kaydını göster

dc.contributor.authorÖzdemir, Merve Erkınay
dc.contributor.authorTelatar, Ziya
dc.contributor.authorEroğul, Osman
dc.contributor.authorTunca, Yusuf
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T22:06:10Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T22:06:10Z
dc.date.issued2018
dc.identifier.citationÖzdemir, M. E., Telatar, Z., Eroğul, O., & Tunca, Y. (2018). Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree. Australasian physical & engineering sciences in medicine, 41(2), 451–461. https://doi.org/10.1007/s13246-018-0643-xen_US
dc.identifier.issn0158-9938
dc.identifier.issn1879-5447
dc.identifier.urihttps://doi.org/10.1007/s13246-018-0643-x
dc.identifier.urihttps://hdl.handle.net/20.500.12508/657
dc.descriptionWOS: 000433915700011en_US
dc.description29717432en_US
dc.description.abstractDysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s13246-018-0643-xen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDysmorphic syndromeen_US
dc.subjectClassificationen_US
dc.subjectArtificial neural networken_US
dc.subjectHierarchical decision treeen_US
dc.subjectPre diagnosisen_US
dc.subject.classificationEngineeringen_US
dc.subject.classificationBiomedicalen_US
dc.subject.classificationBirth Order | Genetic Disorder | Siblingen_US
dc.subject.otherFacial morphologyen_US
dc.subject.otherFacesen_US
dc.subject.otherClassification (of information)en_US
dc.subject.otherComputer aided diagnosisen_US
dc.subject.otherDecision treesen_US
dc.subject.otherFace recognitionen_US
dc.subject.otherNearest neighbor searchen_US
dc.subject.otherNeural networksen_US
dc.subject.otherTrees (mathematics)en_US
dc.subject.otherClassification accuracyen_US
dc.subject.otherEarly diagnosisen_US
dc.subject.otherHierarchical decision treesen_US
dc.subject.otherK-nearest neighborsen_US
dc.subject.otherNon-invasive imagingen_US
dc.subject.otherRecognition ratesen_US
dc.subject.otherReference pointsen_US
dc.subject.otherDiseasesen_US
dc.subject.otherBody dysmorphic disorderen_US
dc.subject.otherChilden_US
dc.subject.otherClinical featureen_US
dc.subject.otherDiagnostic accuracyen_US
dc.subject.otherDiagnostic test accuracy studyen_US
dc.subject.otherDisease classificationen_US
dc.subject.otherDown syndromeen_US
dc.subject.otherFace malformationen_US
dc.subject.otherFacial recognitionen_US
dc.subject.otherFragile X syndromeen_US
dc.subject.otherHumanen_US
dc.subject.otherHurler syndromeen_US
dc.subject.otherK nearest neighboren_US
dc.subject.otherMajor clinical studyen_US
dc.subject.otherPrader Willi syndromeen_US
dc.subject.otherSensitivity and specificityen_US
dc.subject.otherWolf Hirschhorn syndromeen_US
dc.subject.otherAbnormalitiesen_US
dc.subject.otherAlgorithmen_US
dc.subject.otherFaceen_US
dc.subject.otherImage processingen_US
dc.subject.otherInfanten_US
dc.subject.otherPreschool childen_US
dc.subject.otherAlgorithmsen_US
dc.subject.otherHumansen_US
dc.titleClassifying dysmorphic syndromes by using artificial neural network based hierarchical decision treeen_US
dc.typearticleen_US
dc.relation.journalAustralasian Physical & Engineering Sciences in Medicineen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume41en_US
dc.identifier.issue2en_US
dc.identifier.startpage451en_US
dc.identifier.endpage461en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÖzdemir, Merve Erkınayen_US
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster