dc.contributor.author | Özdemir, Merve Erkınay | |
dc.contributor.author | Telatar, Ziya | |
dc.contributor.author | Eroğul, Osman | |
dc.contributor.author | Tunca, Yusuf | |
dc.date.accessioned | 12.07.201910:50:10 | |
dc.date.accessioned | 2019-07-12T22:06:10Z | |
dc.date.available | 12.07.201910:50:10 | |
dc.date.available | 2019-07-12T22:06:10Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Özdemir, M. E., Telatar, Z., Eroğul, O., & Tunca, Y. (2018). Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree. Australasian physical & engineering sciences in medicine, 41(2), 451–461. https://doi.org/10.1007/s13246-018-0643-x | en_US |
dc.identifier.issn | 0158-9938 | |
dc.identifier.issn | 1879-5447 | |
dc.identifier.uri | https://doi.org/10.1007/s13246-018-0643-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/657 | |
dc.description | WOS: 000433915700011 | en_US |
dc.description | 29717432 | en_US |
dc.description.abstract | Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s13246-018-0643-x | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Dysmorphic syndrome | en_US |
dc.subject | Classification | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Hierarchical decision tree | en_US |
dc.subject | Pre diagnosis | en_US |
dc.subject.classification | Engineering | en_US |
dc.subject.classification | Biomedical | en_US |
dc.subject.classification | Birth Order | Genetic Disorder | Sibling | en_US |
dc.subject.other | Facial morphology | en_US |
dc.subject.other | Faces | en_US |
dc.subject.other | Classification (of information) | en_US |
dc.subject.other | Computer aided diagnosis | en_US |
dc.subject.other | Decision trees | en_US |
dc.subject.other | Face recognition | en_US |
dc.subject.other | Nearest neighbor search | en_US |
dc.subject.other | Neural networks | en_US |
dc.subject.other | Trees (mathematics) | en_US |
dc.subject.other | Classification accuracy | en_US |
dc.subject.other | Early diagnosis | en_US |
dc.subject.other | Hierarchical decision trees | en_US |
dc.subject.other | K-nearest neighbors | en_US |
dc.subject.other | Non-invasive imaging | en_US |
dc.subject.other | Recognition rates | en_US |
dc.subject.other | Reference points | en_US |
dc.subject.other | Diseases | en_US |
dc.subject.other | Body dysmorphic disorder | en_US |
dc.subject.other | Child | en_US |
dc.subject.other | Clinical feature | en_US |
dc.subject.other | Diagnostic accuracy | en_US |
dc.subject.other | Diagnostic test accuracy study | en_US |
dc.subject.other | Disease classification | en_US |
dc.subject.other | Down syndrome | en_US |
dc.subject.other | Face malformation | en_US |
dc.subject.other | Facial recognition | en_US |
dc.subject.other | Fragile X syndrome | en_US |
dc.subject.other | Human | en_US |
dc.subject.other | Hurler syndrome | en_US |
dc.subject.other | K nearest neighbor | en_US |
dc.subject.other | Major clinical study | en_US |
dc.subject.other | Prader Willi syndrome | en_US |
dc.subject.other | Sensitivity and specificity | en_US |
dc.subject.other | Wolf Hirschhorn syndrome | en_US |
dc.subject.other | Abnormalities | en_US |
dc.subject.other | Algorithm | en_US |
dc.subject.other | Face | en_US |
dc.subject.other | Image processing | en_US |
dc.subject.other | Infant | en_US |
dc.subject.other | Preschool child | en_US |
dc.subject.other | Algorithms | en_US |
dc.subject.other | Humans | en_US |
dc.title | Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree | en_US |
dc.type | article | en_US |
dc.relation.journal | Australasian Physical & Engineering Sciences in Medicine | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 41 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 451 | en_US |
dc.identifier.endpage | 461 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Özdemir, Merve Erkınay | en_US |
dc.relation.index | Web of Science - Scopus - PubMed | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | en_US |