dc.contributor.author | Rifaioğlu, Ahmet Süreyya | |
dc.contributor.author | Doğan, Tunca | |
dc.contributor.author | Saraç, Ömer Sinan | |
dc.contributor.author | Erşahin, Tülin | |
dc.contributor.author | Saidi, Rabie | |
dc.contributor.author | Atalay, Mehmet Volkan | |
dc.contributor.author | Martin, Maria Jesus | |
dc.contributor.author | Atalay, Rengül Çetin | |
dc.date.accessioned | 12.07.201910:50:10 | |
dc.date.accessioned | 2019-07-12T22:06:18Z | |
dc.date.available | 12.07.201910:50:10 | |
dc.date.available | 2019-07-12T22:06:18Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Rifaioglu, A.S., Doğan, T., Saraç, Ö.S., Ersahin, T., Saidi, R., Atalay, M.V., Martin, M.J., Cetin-Atalay,
R. (2018). Large-scale automated function prediction of protein sequences and an experimental case study
validation on PTEN transcript variants. Proteins: Structure, Function and Bioinformatics, 86 (2), pp. 135-151.
https://doi.org/10.1002/prot.25416 | en_US |
dc.identifier.issn | 0887-3585 | |
dc.identifier.issn | 1097-0134 | |
dc.identifier.uri | https://doi.org/10.1002/prot.25416 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/688 | |
dc.description | WOS: 000419819500001 | en_US |
dc.description | 29098713 | en_US |
dc.description.abstract | Recent advances in computing power and machine learning empower functional annotation of protein sequences and their transcript variations. Here, we present an automated prediction system UniGOPred, for GO annotations and a database of GO term predictions for proteomes of several organisms in UniProt Knowledgebase (UniProtKB). UniGOPred provides function predictions for 514 molecular function (MF), 2909 biological process (BP), and 438 cellular component (CC) GO terms for each protein sequence. UniGOPred covers nearly the whole functionality spectrum in Gene Ontology system and it can predict both generic and specific GO terms. UniGOPred was run on CAFA2 challenge target protein sequences and it is categorized within the top 10 best performing methods for the molecular function category. In addition, the performance of UniGOPred is higher compared to the baseline BLAST classifier in all categories of GO. UniGOPred predictions are compared with UniProtKB/TrEMBL database annotations as well. Furthermore, the proposed tool's ability to predict negatively associated GO terms that defines the functions that a protein does not possess, is discussed. UniGOPred annotations were also validated by case studies on PTEN protein variants experimentally and on CHD8 protein variants with literature. UniGOPred protein functional annotation system is available as an open access tool at . | en_US |
dc.description.sponsorship | TUBITAK 1001 Grants [110S388, 105E035]; KanSiL project, TR Ministry of Development; YOK OYP scholarships | en_US |
dc.description.sponsorship | We thank Dr. Bill Pearson for UniGOPred predictions related discussion and Dr. Evan E. Eichler for CHD8 and Autism related discussions. This work was supported by TUBITAK 1001 Grants 110S388 and 105E035 and by KanSiL project, TR Ministry of Development. A.S.R. was supported by YOK OYP scholarships. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Wiley | en_US |
dc.relation.isversionof | 10.1002/prot.25416 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | automated protein function prediction | en_US |
dc.subject | CHD8 | en_US |
dc.subject | Gene ontology | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Protein sequence | en_US |
dc.subject | PTEN | en_US |
dc.subject | UniProtKB | en_US |
dc.subject | Variation | en_US |
dc.subject.classification | Biochemistry & Molecular Biology | en_US |
dc.subject.classification | Biophysics | en_US |
dc.subject.classification | Scale Invariant Feature Transform | Protein Stability | Missense Mutation | en_US |
dc.subject.other | Function annotation | en_US |
dc.subject.other | Classification | en_US |
dc.subject.other | Similarity | en_US |
dc.subject.other | Search | en_US |
dc.subject.other | PFP | en_US |
dc.subject.other | Phosphatidylinositol 3,4,5 trisphosphate 3 phosphatase | en_US |
dc.subject.other | Protein variant | en_US |
dc.subject.other | Proteome | en_US |
dc.subject.other | Amino acid sequence | en_US |
dc.subject.other | Automation | en_US |
dc.subject.other | Biological phenomena and functions concerning the entire organism | en_US |
dc.subject.other | Case study | en_US |
dc.subject.other | Cell compartmentalization | en_US |
dc.subject.other | Classifier | en_US |
dc.subject.other | Controlled study | en_US |
dc.subject.other | Experimental study | en_US |
dc.subject.other | Functional assessment | en_US |
dc.subject.other | Knowledge base | en_US |
dc.subject.other | Molecular biology | en_US |
dc.subject.other | Ontology | en_US |
dc.subject.other | Prediction | en_US |
dc.subject.other | Priority journal | en_US |
dc.subject.other | Protein database | en_US |
dc.subject.other | Protein function | en_US |
dc.subject.other | Validation study | en_US |
dc.subject.other | Animal | en_US |
dc.subject.other | Chemistry | en_US |
dc.subject.other | Genetics | en_US |
dc.subject.other | Human | en_US |
dc.subject.other | Machine learning | en_US |
dc.subject.other | Metabolism | en_US |
dc.subject.other | Procedures | en_US |
dc.subject.other | Proteomics | en_US |
dc.subject.other | Sequence analysis | en_US |
dc.subject.other | PTEN Phosphohydrolase | en_US |
dc.subject.other | Transcriptome | en_US |
dc.title | Large-scale automated function prediction of protein sequences and an experimental case study validation on PTEN transcript variants | en_US |
dc.type | article | en_US |
dc.relation.journal | Proteins: Structure Function and Bioinformatics | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümü | en_US |
dc.contributor.authorID | 0000-0002-1298-9763 | en_US |
dc.contributor.authorID | 0000-0002-0449-5253 | en_US |
dc.contributor.authorID | 0000-0001-6717-4767 | en_US |
dc.contributor.authorID | 0000-0001-5454-2815 | en_US |
dc.identifier.volume | 86 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 135 | en_US |
dc.identifier.endpage | 151 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Rifaioğlu, Ahmet Süreyya | en_US |
dc.relation.index | Web of Science - Scopus - PubMed | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | en_US |