Basit öğe kaydını göster

dc.contributor.authorRifaioğlu, Ahmet Süreyya
dc.contributor.authorDoğan, Tunca
dc.contributor.authorSaraç, Ömer Sinan
dc.contributor.authorErşahin, Tülin
dc.contributor.authorSaidi, Rabie
dc.contributor.authorAtalay, Mehmet Volkan
dc.contributor.authorMartin, Maria Jesus
dc.contributor.authorAtalay, Rengül Çetin
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T22:06:18Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T22:06:18Z
dc.date.issued2018
dc.identifier.citationRifaioglu, A.S., Doğan, T., Saraç, Ö.S., Ersahin, T., Saidi, R., Atalay, M.V., Martin, M.J., Cetin-Atalay, R. (2018). Large-scale automated function prediction of protein sequences and an experimental case study validation on PTEN transcript variants. Proteins: Structure, Function and Bioinformatics, 86 (2), pp. 135-151. https://doi.org/10.1002/prot.25416en_US
dc.identifier.issn0887-3585
dc.identifier.issn1097-0134
dc.identifier.urihttps://doi.org/10.1002/prot.25416
dc.identifier.urihttps://hdl.handle.net/20.500.12508/688
dc.descriptionWOS: 000419819500001en_US
dc.description29098713en_US
dc.description.abstractRecent advances in computing power and machine learning empower functional annotation of protein sequences and their transcript variations. Here, we present an automated prediction system UniGOPred, for GO annotations and a database of GO term predictions for proteomes of several organisms in UniProt Knowledgebase (UniProtKB). UniGOPred provides function predictions for 514 molecular function (MF), 2909 biological process (BP), and 438 cellular component (CC) GO terms for each protein sequence. UniGOPred covers nearly the whole functionality spectrum in Gene Ontology system and it can predict both generic and specific GO terms. UniGOPred was run on CAFA2 challenge target protein sequences and it is categorized within the top 10 best performing methods for the molecular function category. In addition, the performance of UniGOPred is higher compared to the baseline BLAST classifier in all categories of GO. UniGOPred predictions are compared with UniProtKB/TrEMBL database annotations as well. Furthermore, the proposed tool's ability to predict negatively associated GO terms that defines the functions that a protein does not possess, is discussed. UniGOPred annotations were also validated by case studies on PTEN protein variants experimentally and on CHD8 protein variants with literature. UniGOPred protein functional annotation system is available as an open access tool at .en_US
dc.description.sponsorshipTUBITAK 1001 Grants [110S388, 105E035]; KanSiL project, TR Ministry of Development; YOK OYP scholarshipsen_US
dc.description.sponsorshipWe thank Dr. Bill Pearson for UniGOPred predictions related discussion and Dr. Evan E. Eichler for CHD8 and Autism related discussions. This work was supported by TUBITAK 1001 Grants 110S388 and 105E035 and by KanSiL project, TR Ministry of Development. A.S.R. was supported by YOK OYP scholarships.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/prot.25416en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectautomated protein function predictionen_US
dc.subjectCHD8en_US
dc.subjectGene ontologyen_US
dc.subjectMachine learningen_US
dc.subjectProtein sequenceen_US
dc.subjectPTENen_US
dc.subjectUniProtKBen_US
dc.subjectVariationen_US
dc.subject.classificationBiochemistry & Molecular Biologyen_US
dc.subject.classificationBiophysicsen_US
dc.subject.classificationScale Invariant Feature Transform | Protein Stability | Missense Mutationen_US
dc.subject.otherFunction annotationen_US
dc.subject.otherClassificationen_US
dc.subject.otherSimilarityen_US
dc.subject.otherSearchen_US
dc.subject.otherPFPen_US
dc.subject.otherPhosphatidylinositol 3,4,5 trisphosphate 3 phosphataseen_US
dc.subject.otherProtein varianten_US
dc.subject.otherProteomeen_US
dc.subject.otherAmino acid sequenceen_US
dc.subject.otherAutomationen_US
dc.subject.otherBiological phenomena and functions concerning the entire organismen_US
dc.subject.otherCase studyen_US
dc.subject.otherCell compartmentalizationen_US
dc.subject.otherClassifieren_US
dc.subject.otherControlled studyen_US
dc.subject.otherExperimental studyen_US
dc.subject.otherFunctional assessmenten_US
dc.subject.otherKnowledge baseen_US
dc.subject.otherMolecular biologyen_US
dc.subject.otherOntologyen_US
dc.subject.otherPredictionen_US
dc.subject.otherPriority journalen_US
dc.subject.otherProtein databaseen_US
dc.subject.otherProtein functionen_US
dc.subject.otherValidation studyen_US
dc.subject.otherAnimalen_US
dc.subject.otherChemistryen_US
dc.subject.otherGeneticsen_US
dc.subject.otherHumanen_US
dc.subject.otherMachine learningen_US
dc.subject.otherMetabolismen_US
dc.subject.otherProceduresen_US
dc.subject.otherProteomicsen_US
dc.subject.otherSequence analysisen_US
dc.subject.otherPTEN Phosphohydrolaseen_US
dc.subject.otherTranscriptomeen_US
dc.titleLarge-scale automated function prediction of protein sequences and an experimental case study validation on PTEN transcript variantsen_US
dc.typearticleen_US
dc.relation.journalProteins: Structure Function and Bioinformaticsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-1298-9763en_US
dc.contributor.authorID0000-0002-0449-5253en_US
dc.contributor.authorID0000-0001-6717-4767en_US
dc.contributor.authorID0000-0001-5454-2815en_US
dc.identifier.volume86en_US
dc.identifier.issue2en_US
dc.identifier.startpage135en_US
dc.identifier.endpage151en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorRifaioğlu, Ahmet Süreyyaen_US
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster