Basit öğe kaydını göster

dc.contributor.authorSarıgül, Mehmet
dc.contributor.authorAvcı, Mutlu
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T22:06:47Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T22:06:47Z
dc.date.issued2017
dc.identifier.citationSarigul, M., Avci, M. (2017). Performance comparision of different momentum techniques on deep reinforcement learning. Proceedings - 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2017, art. no. 8001175, pp. 302-306.en_US
dc.identifier.isbn978-1-5090-5795-5
dc.identifier.urihttps://hdl.handle.net/20.500.12508/785
dc.descriptionIEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)en_US
dc.descriptionWOS: 000450992400053en_US
dc.description.abstractIncrease in popularity of deep convolutional neural networks in many different areas leads to increase in the use of these networks in reinforcement learning. Training a huge deep neural network structure by using simple gradient descent learning can take quite a long time. Some additional learning approaches should be utilized to solve this problem. One of these techniques is use of momentum which accelerates gradient descent learning. Although momentum techniques are mostly developed for supervised learning problems, it can also be used for reinforcement learning problems. However, its efficiency may vary due to the dissimilarities in two training learning processes. In this paper, the performances of different momentum techniques are compared for one of the reinforcement learning problems; Othello game benchmark. Test results show that the Nesterov accelerated momentum technique provided a more effective generalization on benchmarken_US
dc.description.sponsorshipYildiz Tech Univ, IEEE Poland Sect, IEEE Syst Man & Cybernet Soc, Gdynia Maritime Univ Students & Alumni Fdn, Gdynia Maritime Univ, IEEE, IEEE Syst Man & Cybernet Soc Chapter, Poland Sect, IEEE Syst Man & Cybernet Soc Tech Comm Computat Collect Intelligenceen_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep reinforcement learningen_US
dc.subjectMomentum techniquesen_US
dc.subjectNesterov momentumen_US
dc.subject.classificationComputer Scienceen_US
dc.subject.classificationArtificial Intelligenceen_US
dc.subject.classificationStochastic Gradient | Coordinate Descent | Convex Minimizationen_US
dc.subject.otherNeural-networksen_US
dc.subject.otherDeep learningen_US
dc.subject.otherDeep neural networksen_US
dc.subject.otherIntelligent systemsen_US
dc.subject.otherMomentumen_US
dc.subject.otherNeural networksen_US
dc.subject.otherProblem solvingen_US
dc.subject.otherComparisionen_US
dc.subject.otherConvolutional neural networken_US
dc.subject.otherGradient descenten_US
dc.subject.otherIts efficienciesen_US
dc.subject.otherLearning approachen_US
dc.subject.otherLearning processen_US
dc.subject.otherNeural network structuresen_US
dc.subject.otherSupervised learning problemsen_US
dc.titlePerformance Comparision of Different Momentum Techniques on Deep Reinforcement Learningen_US
dc.typeconferenceObjecten_US
dc.relation.journalProceedings - 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2017en_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-7323-6864en_US
dc.identifier.startpage302en_US
dc.identifier.endpage306en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorSarıgül, Mehmeten_US
dc.relation.indexWeb of Scienceen_US
dc.relation.indexWeb of Science Core Collection - Conference Proceedings Citation Index- Scienceen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster