Basit öğe kaydını göster

dc.contributor.authorAltan, Gökhan
dc.contributor.authorKutlu, Yakup
dc.contributor.authorAllahverdi, Novruz
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T22:07:05Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T22:07:05Z
dc.date.issued2016
dc.identifier.citationAltan, G., Kutlu, Y., Allahverdi, N. (2016). A new approach to early diagnosis of congestive heart failure disease by using Hilbert–Huang transform. Computer Methods and Programs in Biomedicine, 137, pp. 23-34. https://doi.org/10.1016/j.cmpb.2016.09.003
dc.identifier.issn0169-2607
dc.identifier.issn1872-7565
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2016.09.003
dc.identifier.urihttps://hdl.handle.net/20.500.12508/837
dc.descriptionWOS: 000386750300004en_US
dc.description28110727en_US
dc.description.abstractCongestive heart failure (CHF) is a degree of cardiac disease occurring as a result of the heart's inability to pump enough blood for the human body. In recent studies, coronary artery disease (CAD) is accepted as the most important cause of CHF. This study focuses on the diagnosis of both the CHF and the CAD. The Hilbert-Huang transform (HHT), which is effective on nonlinear and non-stationary signals, is used to extract the features from R-R intervals obtained from the raw electrocardiogram data. The statistical features are extracted from instinct mode functions that are obtained applying the HHT to R-R intervals. Classification performance is examined with extracted statistical features using a multilayer perceptron neural network. The designed model classified the CHF, the CAD patients and a normal control group with rates of 97.83%, 93.79% and 100%, accuracy, specificity and sensitivity, respectively. Also, early diagnosis of the CHF was performed by interpretation of the CAD with a classification accuracy rate of 97.53%, specificity of 98.18% and sensitivity of 97.13%. As a result, a single system having the ability of both diagnosis and early diagnosis of CHF is performed by integrating the CAD diagnosis method to the CHF diagnosis method. (C) 2016 Elsevier Ireland Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevier Ireland Ltd.en_US
dc.relation.isversionof10.1016/j.cmpb.2016.09.003en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCongestive heart failureen_US
dc.subjectCoronary artery diseaseen_US
dc.subjectHilbert-Huang transformen_US
dc.subjectECGen_US
dc.subjectMultilayer perceptronen_US
dc.subjectHRVen_US
dc.subject.classificationComputer Scienceen_US
dc.subject.classificationInterdisciplinary Applicationsen_US
dc.subject.classificationComputer Scienceen_US
dc.subject.classificationTheory & Methodsen_US
dc.subject.classificationEngineeringen_US
dc.subject.classificationBiomedicalen_US
dc.subject.classificationHeart Rate Variability | Heart Failure | Mental Stress
dc.subject.otherCoronary-artery-diseaseen_US
dc.subject.otherEmpirical mode decompositionen_US
dc.subject.otherRate-variabilityen_US
dc.subject.otherClassificationen_US
dc.subject.otherPerformanceen_US
dc.subject.otherSimilarityen_US
dc.subject.otherNetwork
dc.subject.otherDiagnosis
dc.subject.otherDiseases
dc.subject.otherElectrocardiography
dc.subject.otherHeart
dc.subject.otherMathematical transformations
dc.subject.otherMultilayer neural networks
dc.subject.otherMultilayers
dc.subject.otherClassification accuracy
dc.subject.otherClassification performance
dc.subject.otherCongestive heart failures
dc.subject.otherCoronary artery disease
dc.subject.otherHuang transform
dc.subject.otherMulti-layer perceptron neural networks
dc.subject.otherNonstationary signals
dc.subject.otherStatistical features
dc.subject.otherComputer aided diagnosis
dc.subject.otherBack propagation
dc.subject.otherCongestive heart failure
dc.subject.otherControlled study
dc.subject.otherCoronary artery disease
dc.subject.otherDiagnostic accuracy
dc.subject.otherDiagnostic test accuracy study
dc.subject.otherDisease classification
dc.subject.otherEarly diagnosis
dc.subject.otherElectrocardiography
dc.subject.otherFemale
dc.subject.otherHilbert Huang transform
dc.subject.otherHuman
dc.subject.otherLearning algorithm
dc.subject.otherMajor clinical study
dc.subject.otherMale
dc.subject.otherSensitivity and specificity
dc.subject.otherEarly diagnosis
dc.subject.otherElectrocardiography
dc.subject.otherMiddle aged
dc.subject.otherElectrocardiography
dc.subject.otherHumans
dc.subject.otherMiddle Aged
dc.subject.otherSensitivity and Specificity
dc.titleA new approach to early diagnosis of congestive heart failure disease by using Hilbert-Huang transformen_US
dc.typearticleen_US
dc.relation.journalComputer Methods and Programs in Biomedicineen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume137en_US
dc.identifier.startpage23en_US
dc.identifier.endpage34en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorKutlu, Yakup
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster