Basit öğe kaydını göster

dc.contributor.authorMert, İlker
dc.contributor.authorKarakuş, Cuma
dc.contributor.authorÜneş, Fatih
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T22:07:15Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T22:07:15Z
dc.date.issued2016
dc.identifier.citationMert, İ., Karakuş, C., Üneş, F. (2016). Estimating the energy production of the wind turbine using artificial neural network. Neural Computing and Applications, 27 (5), pp. 1231-1244. https://doi.org/10.1007/s00521-015-1921-0en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.urihttps://doi.org/10.1007/s00521-015-1921-0
dc.identifier.urihttps://hdl.handle.net/20.500.12508/865
dc.descriptionWOS: 000378152800012en_US
dc.description.abstractDue to fluctuating weather conditions, estimating wind energy potential is still a significant problem. Artificial neural networks (ANNs) have been commonly used in short-term and just-in-time modeling of wind power generation systems based on main weather parameters such as wind speed, temperature, and humidity. Two different datasets called hourly main weather data (MWD) and daily sub-data (DSD) are used to estimate a wind turbine power generation in this study. MWD are based on historically observed wind speed, wind direction, air temperature, and pressure parameters. Besides, DSD created with statistical terms of MWD consist of maximum, minimum, mean, standard deviation, skewness, and kurtosis values. The main purpose of this study in particular was to develop a multilinear model representing the relationship between the DSD with the calculated minimum (P-min) and maximum (P-max) power generation values as well as the total power generation (P-sum) produced in a day by a wind turbine based on the MWD. While simulation values of the turbine, P-min, P-max, and P-sum, were used as the separately dependent parameters, DSD were determined as independent parameters in the estimation models. Stepwise regression was used to determine efficient independent parameters on the dependent parameters and to remove the inefficient parameters in the exploratory phaseof study. These efficient parameters and simulated power generation values were used for training and testing the developed ANN models. Accuracy test results show that interoperability framework models based on stepwise regression and the neural network models are more accurate and more reliable than a linear approach.en_US
dc.language.isoengen_US
dc.publisherSpringer-Verlag London Ltden_US
dc.relation.isversionof10.1007/s00521-015-1921-0en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectWind energyen_US
dc.subjectStepwise multilinear regressionen_US
dc.subjectBayesian regularizationen_US
dc.subjectLevenberg-Marquardten_US
dc.subjectResilient back-propagationen_US
dc.subject.classificationComputer Scienceen_US
dc.subject.classificationArtificial Intelligence
dc.subject.classificationWind Speed | Forecasting Performance | Prediction Interval
dc.subject.otherPrediction
dc.subject.otherBackpropagation
dc.subject.otherBayesian networks
dc.subject.otherElectric power generationen_US
dc.subject.otherHigher order statisticsen_US
dc.subject.otherInteroperabilityen_US
dc.subject.otherMeteorologyen_US
dc.subject.otherNeural networksen_US
dc.subject.otherRegression analysisen_US
dc.subject.otherStatistical methodsen_US
dc.subject.otherWell drillingen_US
dc.subject.otherWinden_US
dc.subject.otherWind effectsen_US
dc.subject.otherIndependent parametersen_US
dc.subject.otherInteroperability frameworken_US
dc.subject.otherJust-in-time modelingen_US
dc.subject.otherMulti-linear regressionen_US
dc.subject.otherResilient backpropagationen_US
dc.subject.otherTraining and testingen_US
dc.subject.otherWind power generation systemsen_US
dc.subject.otherWind turbinesen_US
dc.titleEstimating the energy production of the wind turbine using artificial neural networken_US
dc.typearticleen_US
dc.relation.journalNeural Computing and Applicationsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümüen_US
dc.identifier.volume27en_US
dc.identifier.issue5en_US
dc.identifier.startpage1231en_US
dc.identifier.endpage1244en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorMert, İlker
dc.contributor.isteauthorKarakuş, Cuma
dc.contributor.isteauthorÜneş, Fatih
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster