dc.contributor.author | Mert, İlker | |
dc.contributor.author | Karakuş, Cuma | |
dc.contributor.author | Üneş, Fatih | |
dc.date.accessioned | 12.07.201910:50:10 | |
dc.date.accessioned | 2019-07-12T22:07:15Z | |
dc.date.available | 12.07.201910:50:10 | |
dc.date.available | 2019-07-12T22:07:15Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Mert, İ., Karakuş, C., Üneş, F. (2016). Estimating the energy production of the wind turbine using artificial neural network. Neural Computing and Applications, 27 (5), pp. 1231-1244.
https://doi.org/10.1007/s00521-015-1921-0 | en_US |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.uri | https://doi.org/10.1007/s00521-015-1921-0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/865 | |
dc.description | WOS: 000378152800012 | en_US |
dc.description.abstract | Due to fluctuating weather conditions, estimating wind energy potential is still a significant problem. Artificial neural networks (ANNs) have been commonly used in short-term and just-in-time modeling of wind power generation systems based on main weather parameters such as wind speed, temperature, and humidity. Two different datasets called hourly main weather data (MWD) and daily sub-data (DSD) are used to estimate a wind turbine power generation in this study. MWD are based on historically observed wind speed, wind direction, air temperature, and pressure parameters. Besides, DSD created with statistical terms of MWD consist of maximum, minimum, mean, standard deviation, skewness, and kurtosis values. The main purpose of this study in particular was to develop a multilinear model representing the relationship between the DSD with the calculated minimum (P-min) and maximum (P-max) power generation values as well as the total power generation (P-sum) produced in a day by a wind turbine based on the MWD. While simulation values of the turbine, P-min, P-max, and P-sum, were used as the separately dependent parameters, DSD were determined as independent parameters in the estimation models. Stepwise regression was used to determine efficient independent parameters on the dependent parameters and to remove the inefficient parameters in the exploratory phaseof study. These efficient parameters and simulated power generation values were used for training and testing the developed ANN models. Accuracy test results show that interoperability framework models based on stepwise regression and the neural network models are more accurate and more reliable than a linear approach. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer-Verlag London Ltd | en_US |
dc.relation.isversionof | 10.1007/s00521-015-1921-0 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Wind energy | en_US |
dc.subject | Stepwise multilinear regression | en_US |
dc.subject | Bayesian regularization | en_US |
dc.subject | Levenberg-Marquardt | en_US |
dc.subject | Resilient back-propagation | en_US |
dc.subject.classification | Computer Science | en_US |
dc.subject.classification | Artificial Intelligence | |
dc.subject.classification | Wind Speed | Forecasting Performance | Prediction Interval | |
dc.subject.other | Prediction | |
dc.subject.other | Backpropagation | |
dc.subject.other | Bayesian networks | |
dc.subject.other | Electric power generation | en_US |
dc.subject.other | Higher order statistics | en_US |
dc.subject.other | Interoperability | en_US |
dc.subject.other | Meteorology | en_US |
dc.subject.other | Neural networks | en_US |
dc.subject.other | Regression analysis | en_US |
dc.subject.other | Statistical methods | en_US |
dc.subject.other | Well drilling | en_US |
dc.subject.other | Wind | en_US |
dc.subject.other | Wind effects | en_US |
dc.subject.other | Independent parameters | en_US |
dc.subject.other | Interoperability framework | en_US |
dc.subject.other | Just-in-time modeling | en_US |
dc.subject.other | Multi-linear regression | en_US |
dc.subject.other | Resilient backpropagation | en_US |
dc.subject.other | Training and testing | en_US |
dc.subject.other | Wind power generation systems | en_US |
dc.subject.other | Wind turbines | en_US |
dc.title | Estimating the energy production of the wind turbine using artificial neural network | en_US |
dc.type | article | en_US |
dc.relation.journal | Neural Computing and Applications | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümü | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümü | en_US |
dc.identifier.volume | 27 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 1231 | en_US |
dc.identifier.endpage | 1244 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Mert, İlker | |
dc.contributor.isteauthor | Karakuş, Cuma | |
dc.contributor.isteauthor | Üneş, Fatih | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | en_US |