Basit öğe kaydını göster

dc.contributor.authorSavrun, Murat Mustafa
dc.contributor.authorİnci, Mustafa
dc.date.accessioned2022-01-11T11:08:38Z
dc.date.available2022-01-11T11:08:38Z
dc.date.issued2021en_US
dc.identifier.citationSavrun, M.M., İnci, M. (2021). Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications. Journal of Cleaner Production, 299, art. no. 126944. https://doi.org/10.1016/j.jclepro.2021.126944en_US
dc.identifier.urihttps://doi.org/10.1016/j.jclepro.2021.126944
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2093
dc.description.abstractThis study introduces an improved ANFIS based MPPT method to maximize the power extraction capability of the FC-connected system. The proposed method is tested in a stand-alone system that consists of an FC in the power rating of 1.9 kW, a boost dc-dc converter, local consumer load, and processor unit. The energy transfer between FC and load is handled through the adjustment of a duty cycle of the dc-dc converter. In this context, the output voltage of FC is controlled by the duty cycle to track the MPP. The proposed method called GA-ANFIS computes optimum reference voltages to control the FC output voltage optimally. The GA-ANFIS uses a reduced-size training dataset extracted by GA to train the ANFIS in comparison with conventional ANFIS. Unlike the existing methods, the proposed method tracks the MPP by merely monitoring FC voltage during operation. Besides, it performs precise MPP tracking by considering pressure & temperature variations. Thus, the proposed method provides reduced computational load owing to its current features. The performance of the proposed method compared with the traditional methods like ANFIS and PI. The power extraction ratings and efficiency values validate the viability and effectiveness of the proposed method (>98%).en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jclepro.2021.126944en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuel cellen_US
dc.subjectGA-ANFISen_US
dc.subjectMaximum power extractionen_US
dc.subjectOperational changesen_US
dc.subjectOptimizationen_US
dc.subject.classificationScience & Technology - Other Topics
dc.subject.classificationEngineering
dc.subject.classificationEnvironmental Sciences & Ecology
dc.subject.classificationProton Exchange Membrane Fuel Cell (PEMFC)
dc.subject.classificationPowerpoint
dc.subject.classificationDC-DC Converter
dc.subject.otherDC-DC converters
dc.subject.otherElectric inverters
dc.subject.otherEnergy transfer
dc.subject.otherFuel cells
dc.subject.otherFuzzy inference
dc.subject.otherFuzzy neural networks
dc.subject.otherFuzzy systems
dc.subject.otherGenetic algorithms
dc.subject.otherAdaptive neuro-fuzzy inference
dc.subject.otherDuty-cycle
dc.subject.otherExtraction capability
dc.subject.otherGA-ANFIS
dc.subject.otherMaximum power extractions
dc.subject.otherNeuro-fuzzy inference systems
dc.subject.otherOperational changes
dc.subject.otherOptimisations
dc.subject.otherOutput voltages
dc.subject.otherPower extraction
dc.subject.otherPoint tracking
dc.subject.otherPerformance enhancement
dc.subject.otherMPPT controller
dc.subject.otherPEMFC
dc.subject.otherStrategy
dc.subject.otherBattery
dc.subject.otherAnfis
dc.titleAdaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applicationsen_US
dc.typearticleen_US
dc.relation.journalJournal of Cleaner Productionen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Mekatronik Mühendisliği Bölümüen_US
dc.identifier.volume299en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorİnci, Mustafa
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster