Basit öğe kaydını göster

dc.contributor.authorDandıl, Beşir
dc.contributor.authorAçıkgöz, Hakan
dc.contributor.authorCoteli, Resul
dc.date.accessioned2025-01-20T10:21:40Z
dc.date.available2025-01-20T10:21:40Z
dc.date.issued2024en_US
dc.identifier.citationDandil, B., Acikgoz, H., Coteli, R. (2024). An effective MPPT control based on machine learning method for proton exchange membrane fuel cell systems. International Journal of Hydrogen Energy, 75, pp. 344-353.en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2024.02.076
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3182
dc.description.abstractThis study proposes a machine learning-based maximum power point tracking method for fuel cell systems. Initially, a Matlab model was developed to accurately represent the behaviour of a proton exchange membrane fuel cell. A dataset for training of machine learning methods was collected from fuel cells operating under different conditions. To demonstrate the effectiveness of the proposed method, comparison studies were conducted using classical methods, namely "perturb and observe" and "incremental conductance" under varying temperature and pressure conditions. Notably, under the condition of temperature and pressure variation, the output powers obtained from the system were 2005.2 W for support vector machine and 2018.5 W for linear regression at 4.5 s, while the output powers of 'incremental conductance' and 'perturb and observe' were 1989.6 W and 1986.3 W, respectively. The results demonstrate that the proposed method contributes to a more efficient operating condition and faster dynamic responses to changes.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.ijhydene.2024.02.076en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuel cellen_US
dc.subjectIncremental conductanceen_US
dc.subjectMachine learningen_US
dc.subjectMaximum power point trackingen_US
dc.subjectPerturb and observeen_US
dc.subject.classificationFuel Cell
dc.subject.classificationAir Supply
dc.subject.classificationProton-Exchange Membrane Fuel Cells System
dc.subject.classificationChemistry, Physical
dc.subject.classificationElectrochemistryEnergy & Fuels
dc.subject.classificationChemistry - Electrochemistry - Proton Conductivity
dc.subject.otherFuel systems
dc.subject.otherMATLAB
dc.subject.otherMaximum power point trackers
dc.subject.otherProton exchange membrane fuel cells (PEMFC)
dc.subject.otherCondition
dc.subject.otherFuel cell system
dc.subject.otherIncremental conductance
dc.subject.otherMachine learning methods
dc.subject.otherMachine-learning
dc.subject.otherMaximum power point tracking
dc.subject.otherOutput power
dc.subject.otherPerturb and observe
dc.subject.otherProton-exchange membranes fuel cells
dc.subject.otherTemperature and pressures
dc.subject.otherSupport vector machines
dc.titleAn effective MPPT control based on machine learning method for proton exchange membrane fuel cell systemsen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Hydrogen Energyen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Mekatronik Mühendisliği Bölümüen_US
dc.identifier.volume75en_US
dc.identifier.startpage344en_US
dc.identifier.endpage353en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorDandıl, Beşir
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster