dc.contributor.author | Dandıl, Beşir | |
dc.contributor.author | Açıkgöz, Hakan | |
dc.contributor.author | Coteli, Resul | |
dc.date.accessioned | 2025-01-20T10:21:40Z | |
dc.date.available | 2025-01-20T10:21:40Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Dandil, B., Acikgoz, H., Coteli, R. (2024).
An effective MPPT control based on machine learning method for proton exchange membrane fuel
cell systems. International Journal of Hydrogen Energy, 75, pp. 344-353. | en_US |
dc.identifier.issn | 0360-3199 | |
dc.identifier.issn | 1879-3487 | |
dc.identifier.uri | https://doi.org/10.1016/j.ijhydene.2024.02.076 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/3182 | |
dc.description.abstract | This study proposes a machine learning-based maximum power point tracking method for fuel cell systems. Initially, a Matlab model was developed to accurately represent the behaviour of a proton exchange membrane fuel cell. A dataset for training of machine learning methods was collected from fuel cells operating under different conditions. To demonstrate the effectiveness of the proposed method, comparison studies were conducted using classical methods, namely "perturb and observe" and "incremental conductance" under varying temperature and pressure conditions. Notably, under the condition of temperature and pressure variation, the output powers obtained from the system were 2005.2 W for support vector machine and 2018.5 W for linear regression at 4.5 s, while the output powers of 'incremental conductance' and 'perturb and observe' were 1989.6 W and 1986.3 W, respectively. The results demonstrate that the proposed method contributes to a more efficient operating condition and faster dynamic responses to changes. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | 10.1016/j.ijhydene.2024.02.076 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fuel cell | en_US |
dc.subject | Incremental conductance | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Maximum power point tracking | en_US |
dc.subject | Perturb and observe | en_US |
dc.subject.classification | Fuel Cell | |
dc.subject.classification | Air Supply | |
dc.subject.classification | Proton-Exchange Membrane Fuel Cells System | |
dc.subject.classification | Chemistry, Physical | |
dc.subject.classification | ElectrochemistryEnergy & Fuels | |
dc.subject.classification | Chemistry - Electrochemistry - Proton Conductivity | |
dc.subject.other | Fuel systems | |
dc.subject.other | MATLAB | |
dc.subject.other | Maximum power point trackers | |
dc.subject.other | Proton exchange membrane fuel cells (PEMFC) | |
dc.subject.other | Condition | |
dc.subject.other | Fuel cell system | |
dc.subject.other | Incremental conductance | |
dc.subject.other | Machine learning methods | |
dc.subject.other | Machine-learning | |
dc.subject.other | Maximum power point tracking | |
dc.subject.other | Output power | |
dc.subject.other | Perturb and observe | |
dc.subject.other | Proton-exchange membranes fuel cells | |
dc.subject.other | Temperature and pressures | |
dc.subject.other | Support vector machines | |
dc.title | An effective MPPT control based on machine learning method for proton exchange membrane fuel cell systems | en_US |
dc.type | article | en_US |
dc.relation.journal | International Journal of Hydrogen Energy | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Mekatronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 75 | en_US |
dc.identifier.startpage | 344 | en_US |
dc.identifier.endpage | 353 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Dandıl, Beşir | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |