Microwave metamaterial absorber for sensing applications
Künye
Bakır, M., Karaaslan, M., Unal, E., Akgol, O., Sabah, C. (2017). Microwave metamaterial absorber for sensing applications. Opto-electronics Review, 25 (4), pp. 318-325. https://doi.org/10.1016/j.opelre.2017.10.002Özet
A metamaterial absorber (MA) based sensor is designed and analysed for various important applications including pressure, temperature, density, and humidity sensing. Material parameters, as well as equivalent circuit model have been extracted and explained. After obtaining a perfect absorption (PA) at around 6.46 GHz and 7.68 GHz, surface current distributions at resonance points have been explained. Since bandwidth and applicability to different sensor applications are important for metamaterial sensor applications, we have realized distinctive sensor demonstrations for pressure, temperature, moisture content and density and the obtained results have been compared with the current literature. The proposed structure uses the changes on the overall system resonance frequency which is caused by the sensor layer's dielectric constant that varies depending on the electromagnetic behaviour of the sample placed in. This model can be adapted to be used in sensor applications including industrial, medical and agricultural products. (C) 2017 Association of Polish Electrical Engineers (SEP). Published by Elsevier B.V. All rights reserved.